
1

GoCD
BRAND STYLEGUIDE

LOGOS

MAIN LOGO

MAIN LOGO SHOULD BE IN BLACK AND WHITE ONLY.
THE WORDMARK SHOULD NOT BE DISPLAYED SEPARATELY
FROM THE TRIANGLE GLYPH.

CLEAR SPACE

1/2 HEIGHT OF GLYPH

1/2 HEIGHT OF GLYPH

SUPPORTING
BRAND MARK

SUPPORTING
BRAND MARK
ALTERNATE

BRAND MARKS SHOULD BE IN BLACK AND WHITE ONLY

When typed out, ‘GoCD’ should
always be displayed as:
 Uppercase G
 Lowercase o
 Uppercase C
 Uppercase D

FONT FAMILIES

The use of URW Geometric is deprecated for use in communcation channels.
Poppins Latin will be used as the primary typeface moving forward.

Poppins Latin source: https://github.com/itfoundry/Poppins

URW Geometric
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
32pt

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

30pt

Poppins Latin

COLOR

BRAND COLORS
The GoCD color palette conveys a tone of
thoughtful engagement, with a distinct edge.
The primary brand colors are used for photo
overlays and help to distinguish the brand in
the majority of settings, while the supporting
colors can be brought in to create variation
and a fresh feel whenever needed. All tones
play well against black, which is key to the
treatment of brand photography. #25282D

R38 / G41 / B46
C75 / M67 / Y59 / K64

#94399E
R148 / G56 / B158
C49 / M91 / Y0 / K0

SECONDARY
BRAND COLORS
The GoCD color palette conveys a tone of
thoughtful engagement, with a distinct edge.
The primary brand colors are used for photo
overlays and help to distinguish the brand in
the majority of settings, while the supporting
colors can be brought in to create variation

and a fresh feel whenever needed. All tones
play well against black, which is key to the
treatment of brand photography.

#4AD9D9

#E84D3D

#BDD44F

#36B0BF

#FFD44F #F58F56

KEY BRAND ART

IMAGES

USE CASES

WEB BANNER

EMAIL FOOTER

ONE SHEETS

This blog post sets out to answer those questions. We are
not going to tell you GoCD is perfect or even that it does
all the same things as Jenkins. It wouldn’t be true. Nor will
we provide an exhaustive feature comparison. There is no
doubt that this post will skip some Jenkins features that
are loved by its users. We will share where GoCD shines
when compared to Jenkins. We’ll compare philosophy,
getting started, continuous delivery, and plugins. (Spoiler
alert: Use GoCD if you want to do continuous delivery).

PHILOSOPHY
GoCD is a best-of-breed tool for Continuous Delivery
(CD). Full stop. GoCD aims to support the most
common CD scenarios out of the box without any plugin
installation. GoCD’s model maps to the core concepts of
CD deployment pipelines.

Jenkins is a general purpose automation tool. It is not a
best-of-breed CI or CD tool. (Yes, Jenkins is a pretty good
CI tool.) Pretty much any use case requires installation of
a particular set of plugins. Near everything is pluggable

and there are over 1000 community plugins. Plugins are
fundamental to Jenkins.

Bottom Line: If you want a single-purposed, focused tool
use GoCD. If you aren’t laser-focused on CD and prefer
maximum tinker-ability, Jenkins might be for you.

CONTINUOUS DELIVERY
CD is a priority for GoCD and for ThoughtWorks. GoCD
exists to help its users implement CD. ThoughtWorks is a
thought leader in CD and our people regularly write and
speak about CD to the wider tech community.

GoCD encourages that there be only one way to
implement the fundamental CD patterns. When you
search for help on how to implement the various
deployment pipeline patterns you will generally find a
single, well-known, well-tested answer. These searches
will turn up results for Jenkins as well but the results might
show obsolete plugins or many solutions, without any
definitive guidance.

We often get asked by potential GoCD users
“Why GoCD?” or “Why GoCD over Jenkins?”.
Or even more often: “We use Jenkins. It’s not
great but it’s set up, we are familiar with it and
it’s good enough. Why change?”

WHY GoCD OVER JENKINS
A P RI L 2 5 , 2 0 1 7 / DAV I D RI C E , MANAGING DIREC TOR THOUGHT WORKS PRODUC TS

GoCD IS CLOUD NATIVE
We’ve built two distinct sets of features to make GoCD
cloud native. First, we've made it easier to operate GoCD
on cloud infrastructure providers. Second, we have
provided better support for container-based workflows.

OPERATING ON CLOUD INFRASTRUCTURE
People operating CI and CD servers on cloud providers
want to perform as little administration of their build
infrastructure as possible. Getting started should be easy.
Build resources, or agents in GoCD parlance, should
scale up and down transparently, as needed. GoCD
addresses this with a suite of “elastic agent” plugins
that provide scalable build infrastructure on Amazon
ECS, Docker, Docker Swarm, OpenStack, and of course,
Kubernetes.

Veteran users of GoCD likely have spent a fair bit of time
managing their agent grids via scripts, puppet, chef and
similar. An elastic agent plugin eliminates this work as
GoCD installs, starts, and stops agents as needed on

whatever cloud provider you point it at.
On Kubernetes, we've provided a helm chart to make it
near trivial to install and operate GoCD in its entirety on
your Kubernetes cluster.

There are two elements to our improved container based
workflows:

1. Teams who are fully immersed in Docker want pretty
much everything to be Docker-based. If you are utilizing
our Docker, ECS Docker or Kubernetes support then
all your build activity will now be Docker based. It just
works.

2. GoCD now supports Docker images as native GoCD
artifacts. GoCD abides by "build once and only once"
and provides full traceability up and downstream for
artifacts. You can now specify a Docker image repository
as a GoCD artifact repository. This allows Docker images
to be a part of GoCD’s native artifact tracing, pushing,
and fetching.

The continuous delivery space is moving at the
speed of light. Containers, infrastructure, and
cloud, are all moving incredibly fast, and so is
GoCD. In the past few months we have released
some exciting new features.

WHAT’S NEW IN GoCD
 O C T O B E R 1 6 , 2 0 1 8 / A R A V I N D S . V, P R O D U C T M A N A G E R AT G O C D

WHAT’S NEW IN GoCD
gocd.org/blog @goforcd

ANALYTICS PLUGIN FOR ENTERPRISE USERS
We have added a CD analytics plugin to our GoCD
enterprise offering. The analytics plugin is intended
to provide visualizations and actionable metrics
to help you to optimize both value stream and the
underlying build resources powering your pipeline.

One of the highlights, is when you’re looking at
your value stream, you can pick any two points and
take a quick look at throughput or cycle time. This
helps you answer questions like “How often do we
deploy to production” and “How long will this take
to reach the customer” more accurately. We have
free trial available.

PIPELINES AS CODE
In case you missed it, another cool feature we
have improved over the past year is “Pipelines as
code”. With this feature, you can store your pipeline
configuration as YAML or JSON files in your own
repository, so that you can modify, control and
version it externally.

We also exposed this ability as a plugin endpoint
so anyone can write a plugin for a config
repository, to store the configuration in any
manner you choose. For more in depth reading on
GoCD’s pipeline as code feature, please visit our
documentation for more details.

Another supported use case is to view your pipeline
trends and identify builds that are slowing down.
GoCD allows you to drill down to different levels of
your pipeline to find root causes, e.g. slow tests or a
lack of resources.

The GoCD enterprise offering provides you add-on
software and support from the core team to enable
GoCD for larger enterprise environments.

IMPROVED THE MAIN DASHBOARD
We have also made a couple of dashboard
improvements. First, we improved performance for
big organizations with hundreds or thousands of
pipelines. Second, we have added personalization
to the dashboard. You can now filter the dashboard
to show only specific pipelines and pipeline
groups. And you can save those settings as custom
dashboard tabs for future reference.

Moving forward, we’re
going to be focusing on user
experience for a few months.
To start, we are going to
make it much easier to utilize
pipelines as code. This will
include making it easier to
add new pipelines as well
as get feedback on whether
your YAML or JSON specifies

a valid pipeline. Beyond
that we are likely to look
at improving how we store
secrets, including integration
with popular 3rd party tools.
If you are interested in learn-
ing more, subscribe to the
GoCD Release Bulletin.

W H AT ’ S N E X T

Brief caption goes here

Brief caption goes here

WHY GoCD OVER JENKINS
gocd.org/blog @goforcd

If you are are new to CD and deployment pipelines,
GoCD’s getting started tutorial is a big help. It will teach
you the key deployment pipeline patterns while you learn
how GoCD works.

Jenkins 2.0 placed a big emphasis on its Pipeline feature.
But there is little evidence that Jenkins has made CD its
top priority. CD is still implemented by the installation of a
variety of plugins. Many common CD patterns (build an
artifact only once, full traceability up and down stream,
and more) are either impossible to implement or can
only be cobbled together with fragile combinations of
plugins. The official Pipeline feature documentation does
not reference CD or deployment pipeline concepts. You
might struggle when implementing many of the core
deployment pipeline patterns.

Bottom Line: If you are serious about implementing CD,
beginner or expert, GoCD is the right choice. It’s easy to
model deployment pipelines and the GoCD community
truly cares about CD.

GETTING STARTED
GoCD has an easy to follow, definitive tutorial for getting
started. This tutorial teaches the basic concepts of CD as
well as the GoCD domain model. Someone new to GoCD
will be up and running in 15 minutes with this tutorial. It
teaches the app, the core concepts, and the preferred
style of building deployment pipelines.

A large part of installing Jenkins is installing the right
mix of plugins for your use case. It can be challenging
to know what plugins you will need up front. Jenkins 2.0
has improved this experience a bit by providing a wizard
to guide you through plugin installation. This wizard
includes a default set of common plugins and prompting
you to setup your first build. But this won’t prevent you
from needing an in depth understanding of the plugins to
create the correct plugin mix for your use case.

Both products can present a tough getting started
experience for someone who just wants to dive right in.
GoCD’s model can be difficult to grok if you are coming
to it from a pure CI tool. Jenkins has hurdles around
configuring required tools, unintuitive SCM configuration,
and installing additional plugins.

Bottom Line: If you are wanting to build deployment
pipelines for CD, GoCD’s tutorial will quickly get you to a
very productive place. Both tools can be frustrating to use
if you are new to them and you don’t RTFM.

PLUGINS
GoCD’s plugin philosophy is that plugins should extend
its ecosystem and not alter its core functionality. Nor does
the team aim to use plugins to make GoCD ultimately
flexible. The aim is to keep it as easy-as-possible to
implement CD on GoCD but in as many environments
as possible.

GoCD has a handful of extension points: SCM, task,
notifications, authentication, authorization, configuration,
elastic agents. The team designs endpoints such that all
plugins will be interoperable. It doesn’t matter whether
the core team or the community has built the plugin.

Jenkins has a thriving plugin ecosystem. They should
be proud. Jenkins is seemingly infinitely configurable,
hackable, and extendable via plugins.

It’s our opinion requiring just the right set of plugins to
get Jenkins to support your use case is problematic.
Upgrades are challenging. Support and maintenance are
unclear. Not all plugins play well together. There’s almost
never one way to do something. Multiple ways of doing
things is not bad in and of itself but the follow-on from
that is that it’s hard to find answers to questions around
how to implement builds & pipelines. And we think that’s
a huge problem.

Bottom Line: GoCD provides its core value out of the
box. Maybe you will add a few integration plugins to
make GoCD fit better in your environment. Jenkins will
require many plugins to deliver value. You will need to
understand the plugins, how they interoperate, and how
to upgrade them. GoCD will feel more stable. Jenkins will
feel more hackable. You will need to decide which is a
better match to your needs and philosophy.

If you are doing or want to
do CD you should be using
GoCD. GoCD will feel good
to both beginners and those
highly experienced in build-
ing deployment pipelines.
If you want to utilize a vast
plugin catalog to automate
“all the things” then Jenkins
might be a better fit for you.

The GoCD community con-
tinues to grow, is passionate
about CD and is where you
should be if you are serious
about CD. We are happy
to discuss individual needs
in our user group so get in
touch.

T H E F I N A L W O R D

SUPPORTING
BRAND MARK

PRINTED BANNER

POSTCARD

Free & Open Source
CI/CD Server
Easily model and visualize complex
workflows with GoCD.

gocd.org
@goforcd

Apply this sticker to your webcam to guard
against webcam spying

• Prevents webcam spying
• Sticks to any surface
• No sticky residue!
• Microfiber front for screen cleaning

E-BOOK

SUZIE PRINCE
ARAVIND S.V.

DAVID RICE

6

Continuous integration is a practice that puts the integration phase
earlier in the development cycle so that building, testing and
integrating code happens on a more regular basis.

Continuous Integration (CI)

CI means that a developer who writes code on his laptop at home,
and another dev who codes on her desktop in the office, can both
write software for the same product separately, and integrate their
changes together in a place called the “source repository”. They can
then build the combined software from the bits they each wrote and
test that it works the way they expect.

Developers generally use a tool called the “CI server” to do the
building and the integration for them. CI requires that developers have
self-testing code. This is code that tests itself to ensure that it is working
as expected, and these tests are often called unit tests. When all the
unit tests pass after the code is integrated, developers will get a green
build. This indicates that they have verified that their changes are
successfully integrated together, and the code is working as expected
by the tests. However, while the integrated code is successfully working
together, it not yet ready for production because it has not been tested
and verified as working in production-like environments.

BUILD

TEST

RESULT

CI SERVER
SOURCE

REPOSITORY

RESULT

CHECK-IN

10

In this section, we will explore some
core development practices that are
prerequisites for continuous delivery.
We’ll present questions you need to
answer honestly about your own people,
teams, and organization to determine your
readiness for continuous delivery.

PART 2: ARE YOU READY
FOR CONTINUOUS DELIVERY?

go
GoCD is an on premises, open source, continuous
delivery tool with comprehensive pipeline modeling
and value stream map to help you get better visibility
into and control of your teams’ deployments.

gocd.org

7

Continuous delivery means that each time the dev team makes
changes to the code, integrates and builds the code, they also
automatically test this code on environments that are very similar to
production. We call this progression of deploying to – and testing on –
different environments a “deployment pipeline”. Often the deployment
pipeline has a development environment, a test environment, and
a staging environment, but these stages vary by the team, product
and organization.

Continuous Delivery

In each different environment, the code is tested differently. This gives
more and more confidence to team that the code will work on the
production environment when the code is deployed there. Crucially,
the code is only promoted to (tested on) the next environment in the
deployment pipeline if it passes the tests of the previous environment.
This way the dev team can get new feedback from the tests in each
environment and, if there is a failure, they can understand more easily
where the issue might be and get it fixed before the code goes to the
production environment.

BUILD

TEST

RESULT

CI SERVER
SOURCE

REPOSITORY

RESULT

CHECK-IN

TEST

STAGING

PRODUCTION

RESULT

RESULT

RESULT

MANUAL

11

Do you put everything into version control?

A foundation of CD is the ability to put a specific version of your
application into a given environment at any point in time.

 • Putting everything needed to make your application into a
 version control system
 • Any time you change anything, push the changes to
 version control.
 • Write an automated script that, given a version, checks out
 everything from version control and assembles your application

CD is impossible when software teams (or the people on a single
team) work in isolation from each other. When development work
happens in isolation, our preferred mechanism for doing this is called
“trunk-based development”:

 • Everyone regularly pulls others’ changes from version control
 • Everyone regularly pushes their changes to version control
 • Everyone works in the same place in version control typically
 called “trunk” or “master”

v1.0
v1.1 v1.2 v1.3

Contents

PART 1: THE BASICS
Continuous Integration (CI) ..6
Continuous Delivery .. 7
Continuous Deployment ...8
Devops ..9

PART 2: ARE YOU READY FOR CONTINUOUS DELIVERY?
Do you put everything into version control?12
Do your developers practice Continuous Integration?13
Do you automate relentlessly? ...14

8

This is a practice where every change that developers make, assuming
it passes all the test stages, automatically goes to production. You
need to be practicing continuous delivery before you can achieve
continuous deployment. Some may want to decide whether to do
continuous delivery (versus continuous deployment) from the start, but
that decision really can’t be made until you’re doing CD.

Continuous Deployment

BUILD

TEST

RESULT

CI SERVER
SOURCE

REPOSITORY

RESULT

CHECK-IN

TEST

STAGING

PRODUCTION

RESULT

RESULT

RESULT

AUTO

12

Do your developers practice Continuous Integration?

For CD to be successful, the entire organization must trust that your
software is high quality and always in a working state. In terms of
development team practices, CI is the fundamental building block to
achieve this level of trust.

 • Developers check code into trunk/master multiple times each day
 • Developers maintain a suite of unit tests that verify the code works
 - before merge, locally, and post merge - on an integration
 machine or CI server

The end result is a development team that has high trust that the
code in trunk/master actually works. This will leave the development
team more willing to push code to testers, or even production,
more regularly.

BUILD

TEST

RESULT

CI SERVER
SOURCE

REPOSITORY

RESULT

CHECK-IN

5

In this section, we’ll look at what is ‘DevOps’

and how it has improved our way of working.

We’ll introduce key practices that aid a DevOps

culture - Continuous Integration, Continuous

Delivery and Continuous Deployment, and

highlight the differences between them.

PART 1: THE BASICS

9

The word “DevOps” comes from the combination of the words
“development” and “operations”. DevOps is a culture that promotes
teams developing and operating software working together. Specifically,
DevOps refers to cross-functional communication and collaboration
of all roles, including things like security and compliance, during the
software delivery and deployment process.The goal is the ability to
release better quality software more quickly and more reliably.

Common traits of organizations who have a so-called DevOps culture
are: autonomous poly-skilled teams, high levels of test and release
automation and common goals between the poly-skilled members.

DevOps

BUILD

DEVELOPERS HANDOFF HANDOFF HANDOFF

CODE TEST RELEASE OPERATE

OLD WAY:

CODE

BUILD

TEST

RELEASEOPERATE

NEW WAY:
DevOps culture is commonly
associated with continuous
delivery because they both aim to
increase collaboration between
development and operations
teams, and both use automatic
processes to build, test and
release software more quickly,
frequently and reliably. All things
that people like us want.

13

Do you automate relentlessly?

To practice CD, the entire team needs to get into the mindset of
relentless automation of nearly everything.

Some components and aspects of your process that need automation:
 • Tests at different levels, such as unit, integration, UI,
 regression,security and performance
 • Database schema creation, data migration and rollback
 • Installer creation and signing (if you have them)
 • Generation of documentation for every release
 • Last-mile deployment of your application to any environment
 • Provisioning of infrastructure all the way from test environments
 to production
 • Provisioning of developer workspaces

Relentless automation might seem daunting. The best approach is to
figure out the manual processes you are already using, and then make
a plan to gradually automate them. As you begin to achieve small
successes, you will want to automate more and more.

