
SUZIE PRINCE
ARAVIND S.V.

DAVID RICE

go
GoCD is an on premises, open source, continuous
delivery tool with comprehensive pipeline modeling
and value stream map to help you get better visibility
into and control of your teams’ deployments.

gocd.org

Contents

PART 1: THE BASICS
Continuous Integration (CI) ..6
Continuous Delivery .. 7
Continuous Deployment ...8
Devops ..9

PART 2: ARE YOU READY FOR CONTINUOUS DELIVERY?
Do you put everything into version control?12
Do your developers practice Continuous Integration?13
Do you automate relentlessly? ...14

5

In this section, we’ll look at what is ‘DevOps’

and how it has improved our way of working.

We’ll introduce key practices that aid a DevOps

culture - Continuous Integration, Continuous

Delivery and Continuous Deployment, and

highlight the differences between them.

PART 1: THE BASICS

6

Continuous integration is a practice that puts the integration phase
earlier in the development cycle so that building, testing and
integrating code happens on a more regular basis.

Continuous Integration (CI)

CI means that a developer who writes code on his laptop at home,
and another dev who codes on her desktop in the office, can both
write software for the same product separately, and integrate their
changes together in a place called the “source repository”. They can
then build the combined software from the bits they each wrote and
test that it works the way they expect.

Developers generally use a tool called the “CI server” to do the
building and the integration for them. CI requires that developers have
self-testing code. This is code that tests itself to ensure that it is working
as expected, and these tests are often called unit tests. When all the
unit tests pass after the code is integrated, developers will get a green
build. This indicates that they have verified that their changes are
successfully integrated together, and the code is working as expected
by the tests. However, while the integrated code is successfully working
together, it not yet ready for production because it has not been tested
and verified as working in production-like environments.

BUILD

TEST

RESULT

CI SERVER
SOURCE

REPOSITORY

RESULT

CHECK-IN

7

Continuous delivery means that each time the dev team makes
changes to the code, integrates and builds the code, they also
automatically test this code on environments that are very similar to
production. We call this progression of deploying to – and testing on –
different environments a “deployment pipeline”. Often the deployment
pipeline has a development environment, a test environment, and
a staging environment, but these stages vary by the team, product
and organization.

Continuous Delivery

In each different environment, the code is tested differently. This gives
more and more confidence to team that the code will work on the
production environment when the code is deployed there. Crucially,
the code is only promoted to (tested on) the next environment in the
deployment pipeline if it passes the tests of the previous environment.
This way the dev team can get new feedback from the tests in each
environment and, if there is a failure, they can understand more easily
where the issue might be and get it fixed before the code goes to the
production environment.

BUILD

TEST

RESULT

CI SERVER
SOURCE

REPOSITORY

RESULT

CHECK-IN

TEST

STAGING

PRODUCTION

RESULT

RESULT

RESULT

MANUAL

8

This is a practice where every change that developers make, assuming
it passes all the test stages, automatically goes to production. You
need to be practicing continuous delivery before you can achieve
continuous deployment. Some may want to decide whether to do
continuous delivery (versus continuous deployment) from the start, but
that decision really can’t be made until you’re doing CD.

Continuous Deployment

BUILD

TEST

RESULT

CI SERVER
SOURCE

REPOSITORY

RESULT

CHECK-IN

TEST

STAGING

PRODUCTION

RESULT

RESULT

RESULT

AUTO

9

The word “DevOps” comes from the combination of the words
“development” and “operations”. DevOps is a culture that promotes
teams developing and operating software working together. Specifically,
DevOps refers to cross-functional communication and collaboration
of all roles, including things like security and compliance, during the
software delivery and deployment process.The goal is the ability to
release better quality software more quickly and more reliably.

Common traits of organizations who have a so-called DevOps culture
are: autonomous poly-skilled teams, high levels of test and release
automation and common goals between the poly-skilled members.

DevOps

BUILD

DEVELOPERS HANDOFF HANDOFF HANDOFF

CODE TEST RELEASE OPERATE

OLD WAY:

CODE

BUILD

TEST

RELEASEOPERATE

NEW WAY:
DevOps culture is commonly
associated with continuous
delivery because they both aim to
increase collaboration between
development and operations
teams, and both use automatic
processes to build, test and
release software more quickly,
frequently and reliably. All things
that people like us want.

10

In this section, we will explore some
core development practices that are
prerequisites for continuous delivery.
We’ll present questions you need to
answer honestly about your own people,
teams, and organization to determine your
readiness for continuous delivery.

PART 2: ARE YOU READY
FOR CONTINUOUS DELIVERY?

11

Do you put everything into version control?

A foundation of CD is the ability to put a specific version of your
application into a given environment at any point in time.

 • Putting everything needed to make your application into a
 version control system
 • Any time you change anything, push the changes to
 version control.
 • Write an automated script that, given a version, checks out
 everything from version control and assembles your application

CD is impossible when software teams (or the people on a single
team) work in isolation from each other. When development work
happens in isolation, our preferred mechanism for doing this is called
“trunk-based development”:

 • Everyone regularly pulls others’ changes from version control
 • Everyone regularly pushes their changes to version control
 • Everyone works in the same place in version control typically
 called “trunk” or “master”

v1.0
v1.1 v1.2 v1.3

12

Do your developers practice Continuous Integration?

For CD to be successful, the entire organization must trust that your
software is high quality and always in a working state. In terms of
development team practices, CI is the fundamental building block to
achieve this level of trust.

 • Developers check code into trunk/master multiple times each day
 • Developers maintain a suite of unit tests that verify the code works
 - before merge, locally, and post merge - on an integration
 machine or CI server

The end result is a development team that has high trust that the
code in trunk/master actually works. This will leave the development
team more willing to push code to testers, or even production,
more regularly.

BUILD

TEST

RESULT

CI SERVER
SOURCE

REPOSITORY

RESULT

CHECK-IN

13

Do you automate relentlessly?

To practice CD, the entire team needs to get into the mindset of
relentless automation of nearly everything.

Some components and aspects of your process that need automation:
 • Tests at different levels, such as unit, integration, UI,
 regression,security and performance
 • Database schema creation, data migration and rollback
 • Installer creation and signing (if you have them)
 • Generation of documentation for every release
 • Last-mile deployment of your application to any environment
 • Provisioning of infrastructure all the way from test environments
 to production
 • Provisioning of developer workspaces

Relentless automation might seem daunting. The best approach is to
figure out the manual processes you are already using, and then make
a plan to gradually automate them. As you begin to achieve small
successes, you will want to automate more and more.

There are more small steps you can take
early in your continuous delivery journey
that will have immediate, positive impacts.

Read more about our insights into
continuous delivery at www.gocd.org/blog

© 2018 ThoughtWorks, Inc.

