
ACTIONABLE
CONTINUOUS
DELIVERY
METRICS

VOLUME 1

SUZIE PRINCE
ARAVIND S.V.

go
GoCD is an on premises, open source, continuous
delivery tool with comprehensive pipeline modeling
and value stream map to help you get better visibility
into and control of your teams’ deployments.

gocd.org

http://gocd.org

PART 1

WHY MEASURE

PART 2

WHAT TO MEASURE

PART 3

HOW TO MEASURE

PART 4

ACT ON YOUR METRICS

Software and IT are key drivers for innovation in most
organizations, and speed of software delivery is key to their
success. Continuous delivery offers an accelerated feedback
loop that helps deliver software faster and more reliably.

Measurement, Feedback, Improvement
The main reason why you should measure your CD process is to see if you
are improving and delivering on your goals. A feedback cycle with “build,
measure, learn” metrics is a way to set specific and measurable goals, direct
activities towards achieving those goals, and help you understand if you are
achieving those goals.

A C T I O N A B L E C O N T I N U O U S D E L I V E RY M E T R I C S

W H Y M E A S U R E

1

MEASURELEARN
DO CHECK

PLANACT

BUILD

W H Y M E A S U R E

2A C T I O N A B L E C O N T I N U O U S D E L I V E RY M E T R I C S

The specific data you gather can also be very useful for you to
understand a number of things:

Predict Future Behavior
Data will provide you more accurate estimates for your business. For example,
if you know your cycle time, you can more accurately answer questions about
how long it will take for something to be ready for your customers.

Estimate the cost or value of an activity
If you are considering parallelizing tasks or removing manual steps in your
process, once you have some data about your current process you can
calculate the time savings of these improvement activities. From there, this
data could potentially help your organization estimate dollars made or saved
by certain specific improvements.

Continuous Delivery Baselines and Benchmarking
Once you have some data, the values can be used as your baseline. Those
baseline values are key to understanding whether you are improving your
own process as well as key to understanding where you stand relative to
“high performing” teams.

MORE FREQUENT
DEPLOYMENTS

200x
FASTER RECOVERY

FROM FAILURES

24x

LOWER CHANGE
FAILURE RATE

3x
SHORTER

LEAD TIMES

2555x

Credit: https://puppet.com/resources/whitepaper/2016-state-of-devops-report

https://puppet.com/resources/whitepaper/2016-state-of-devops-report

Once you introduce a CD pipeline and have established your
path-to-production, the next step is to monitor its efficiency. There is
no template for this, you’ll need to decide which metrics are right for
your organization.

We do not suggest measuring everything, however, here is a list that
we recommend using to help monitor your CD process.

• Throughput
• Cycle time
• Failure rate
• Mean time to recover (MTTR)

There are other metrics for you to consider depending on your goals,
and in this booklet we have only highlighted the ones we think are
most important to get started. Some other metrics that are worth taking
a look at are defect fix times, escaped defects, total regression test
time, number of branches in version control, production outages
during deployment, deployment frequency, lead time, mean time
between failures, and more.

A C T I O N A B L E C O N T I N U O U S D E L I V E RY M E T R I C S

W H AT T O M E A S U R E

3

S E L E C T I N G M E T R I C S

4A C T I O N A B L E C O N T I N U O U S D E L I V E RY M E T R I C S

If you are selecting your own set of metrics, be thoughtful about what
metrics you choose to capture and measure. Some metrics are easy to
measure but provide no value to your organization.

Beware of:
Vanity metrics - Metrics that are easily
manipulated and do not necessarily correlate
to the numbers that really matter. These are
metrics that are easy to measure but provide
no value to your organization. A good
example of this is bugs fixed. We see many
organizations tracking bugs or defects fixed
but with little understanding about whether
this really provides value to their processes or
their customers.

Unclear metrics - Be sure to define what your
metrics mean to you (as we have done here),
and educate everyone about what these
mean. For instance, cycle time can have
many definitions. It can mean from idea to
completed feature, or commit to production.
The best thing to do is stick to whichever
definition you’ve decided on and ensure
everyone on your team is clear what that is.

Invisible metrics - Make sure your metrics are
visible. We suggest big visible dashboards
in your workspaces and regular reports (that
people read!) to ensure that the metrics really
are used.

Comparing across teams - Avoid insisting
every team use the same metrics if their goals
differ and avoid comparing across teams
and creating valueless competition.

The Hawthorne Effect or observer effect -
This is when individuals modify their behavior
in response to their awareness of being
observed or measured. We know of an
organization who started to measure test
coverage and in response people began
writing tests without assertions to get the test
coverage results they needed.

Gathering “all the data” and not using it -
Avoid gathering data for the sake of it. Be
specific and clear about what is important
and change what you measure if it doesn’t
work to help you improve.

Throughput :
Throughput is a measure of how frequently your team deploys code.

DAYS

THROUGHPUT

THROUGHPUT: 25%

A C T I O N A B L E C O N T I N U O U S D E L I V E RY M E T R I C S

H O W T O M E A S U R E

5

This metric is represented as a percentage.

The word “continuous” in CD implies high throughput. Having a higher throughput
means that you have more deployments, increasing your confidence in your
deployment capability. This also means that you’re delivering value to end users
and stakeholders more quickly. Generally this means your are creating more value
for your organization more often. It also means you have many more opportunities
for feedback on your software.

Throughput still has to be balanced with quality. You don’t want to increase
throughput by removing tests. You want to be able to deliver more often to
production, while maintaining or even improving quality. That’s what CD is
about and what the throughput metric captures.

What to look for?
High functioning teams tend to have higher throughput as compared to their less
efficient peers. It is good to baseline your throughput, and try to increase it as much
as it makes sense in the context of your organization’s business and goals.

Cycle time:
Cycle time is a measure of how long it takes from committing code to
deploying it to a production environment.

From the time you commit code to that code successfully running in
production, how long does that take?

DAYS

THROUGHPUT: 25%
CYCLE TIME: 3 DAYS

CYCLE TIME

H O W T O M E A S U R E

6A C T I O N A B L E C O N T I N U O U S D E L I V E RY M E T R I C S

This metric is represented as a duration.

Whereas throughput is the number of times something happened, cycle time is
the cumulative lapsed time it took for that to happen.

In the DevOps literature you may see cycle time used interchangeably with lead
time. There is a lot of confusion around the meaning of these two terms. It is
important that you are clear what you mean, you define what you mean, and
you are consistent with your definition within your organization.

What to look for?
In general we aim for a short cycle time. Highly efficient teams have lower
cycle times.

DAYS

THROUGHPUT: 25%
CYCLE TIME: 3 DAYS
FAILURE RATE: 75%

FAILURE RATE

Failure rate:
Failure rate is a measure of the percentage of changes that result in
a failure. A failure is defined as something that requires remediation
such as a roll forward.

This metric is represented as a percentage.

When you increase the throughput, there’s always the risk of impacting the
quality of the artifact generated. This means that you’re not delivering value to
customers more frequently even if you deploy often. It is important to monitor
both the throughput, cycle time and quality to ensure you’re not introducing
instability into your CD process by increasing the throughput.

What to look for?
High failure rates can be associated with longer cycle times and increased MTTR.
Pay attention to whether the failures at certain stages are repeated and look to
remove the underlying cause. To achieve high throughput you should reduce
failure rate (but not quality) and reduce your cycle time.

A C T I O N A B L E C O N T I N U O U S D E L I V E RY M E T R I C S

H O W T O M E A S U R E

7

Mean time to recover (MTTR):
Mean time to recover (MTTR) is a measure of how long it takes to fix
a build failure. Additionally, how long it takes you to restore service
during a deployment.

This metric is represented as the mean duration.

When looking at mean time, we look at multiple occurrences of the “failed, succeed”
cycle to understand how long it took for a failure to be resolved.

What to look for?
A low MTTR implies quicker feedback. You’re more open to experiments and learning
quickly because recovering from failures is painless. A high MTTR means that the rest
of the team has to wait a long time for you to get the pipeline or application back to
a working state after any failures, elongating the feedback loop and causing them to
have to wait before they make more changes/improvements. That could make you
more cautious about making changes, for fear of failures.

DAYS

THROUGHPUT: 25%
CYCLE TIME: 3 DAYS
FAILURE RATE: 75%
MTTR: 2 DAYS

MTTR

MTTR

H O W T O M E A S U R E

8A C T I O N A B L E C O N T I N U O U S D E L I V E RY M E T R I C S

Improvement Checklist

Here’s a brief list of things you can do to get started in introducing
metrics into your continuous delivery workflow.

 Create a Value Stream Map - A visual representation of your
end-to-end CD workflow

 Select metrics that are important to you - Start with MTTR,
Failure Rate, Throughput, and Cycle Time

 Capture your metrics - Ensure your CD tool lets you do this, with
GoCD, you can use the Analytics Plugin

 Review metrics - Once you’ve captured data, ensure it is visible
and share it

 Learn! - Use the metrics you’ve collected to understand if you’re
achieving the goals you’ve set for your CD processes

A C T I O N A B L E C O N T I N U O U S D E L I V E RY M E T R I C S

A C T O N YO U R M E T R I C S

9

Recap:
• Metrics are important to setting goals, improving and predicting
• Start with throughput, cycle time, failure rate and MTTR
• Be thoughtful about what you measure
• Look for connections between metrics
• Understand your context
• Review, change, and improve your process
• Consider using tools to help capture and visualize data

A C T O N YO U R M E T R I C S

1 0A C T I O N A B L E C O N T I N U O U S D E L I V E RY M E T R I C S

IMPROVE
ON THOSE
METRICS

ACT ON
THOSE METRICS

COLLECT
METRICS

DEFINE
METRICS

1

3

24

2016 State of Devops Report
https://puppet.com/resources/whitepaper/2016-state-of-devops-report

2017 State of Devops Report
https://puppet.com/resources/whitepaper/state-of-devops-report

Value Stream Map (VSM)
https://docs.gocd.org/current/navigation/value_stream_map.html

4 Important Metrics for Continuous Delivery
https://www.gocd.org/2018/01/31/continuous-delivery-metrics/

Martin Fowler Continuous Delivery bliki
https://martinfowler.com/bliki/ContinuousDelivery.html

CD of Microservices - Remediation Strategy
https://www.gocd.org/2018/09/11/cd-microservices-remediation-strategy/

A C T I O N A B L E C O N T I N U O U S D E L I V E RY M E T R I C S

R E F E R E N C E S

1 1

gocd.org

ACTIONABLE METRICS
TO IMPROVE YOUR

SOFTWARE DELIVERY

GoCD is offering a free trial for our enterprise
analytics plugin, which gives you access to the
metrics covered in this booklet and allow you
start improving your software delivery processes.
• How long do pipelines take?
• How quickly do we recover from failures?
• Which jobs are slowest?
• Do we need to add more resources?

Sign up at gocd.org/analytics

http://gocd.org/analytics
http://gocd.org

© 2018 ThoughtWorks, Inc.

